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1. Introduction

N
vttt

There have been a number of studies on Poisson approximations for
sums of uniformly small random variables. Of paramount interest is the
total-variation distance between a sum of random variables and a Poisson
variable., The total—-variation distance between two probability measures

(distributions) F and G on some measurable space is defined by

DO atle 0% S V0 SR T A
‘4, fatefe

(1.1) d(F,G) = supan(B) - 6(B)],

'i where the supremum is over all measurable sets (2d(F,G) is the total
&, variation of the signed measure F-G). The total-variation distance

between random elements X and Y with the respective distributions F and G

is d(X,Y) = d(F,G).

Building on the works of Hodges and Le Cam (1960), Le Cam (1960),

,oa s e
l’l.l.‘

« s

Franken (1964) and Freedman (1974), Serfling (1975) proved this result:

2, 1
‘.l

®

If xl,...,xn are non-negative integer-valued random variables adapted to

n
the increasing og-fields {Fi}i=0 , then

e
] .1 ) 4’

n n
(1.2) d( £ X,,M < t [EXp,) + Elp, - Ep,| + P(X, » 2)],
i i i i i
i=1 i=}1
- where Py= P(Xi = 1| ) and N is Poisson with mean 21 l i° Comparable

bounds for other Poisson approximations appear in Barbour and Eagleson
é' (1983), Brown (1983), Chen (1975), Kabanov et al. (1983), Kerstan (1964),
Valkeila (1982) and their references. Such bounds are useful for proving

limit theorems for random variables and point processes as well,

In this paper, we present analogues of (1.2) for compound Poisson

approximations for sums. We consider sums of random elements that take

.- ..- ..'...-_.."...-_ R P \-‘ - I e e S TSI ‘o ‘_._' T R S
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values in a measurable group S: the group operation, addition, is

measurable. If X is a random element of S with the compound Poisson
distribution H(B) = I o (B) ane-a/n!, then we say X is CP(qa,F). If X :':J

n=0
has the distribution EH(+), where a or F are random, then we say X is :'.::
mixed CP(a,F). "!

Here is our main result. Let xl,...,xn be random elements of S

adapted to the increasing o-fields {Fi }?’0, and define
py= P(X; #O[F _.), F.(B) =P(X eB|F_,, X, #0).

Let F be a distribution on S with F({0})= O, and define, by (1.1), the

random distance di- d(Fi,F) (Fi is random but F is not).

n
Theorem 1. If Z is mixed CP( I Pi’F)’ then
i=]1
n n 2
(1.3) d( X,,2) <E[ I(d; +pD].
i=1 i=1
n
1f Z is CP( £ a,,F) where a,= Ep,, then
i i i
i=]
n n 2
(1.4) d( £X,,2) <E[ I (dy + |py = o] + o) ]
i=1 i=1
If Z is CAa,F), then
n n 2 n
(1.5) a( £X,,2) <E[ X (4, +p) + | 2p - o]
_ 1=1 1=1 i=1
_ This result says, roughly, that Z‘i‘_lxi is approximately compound
. Poisson when the Xi's are rarely nonzero (the pi's are small), and given '.'_‘:
3 =
f. that the X 's are nonzero, their conditional distributions Fl""’Fn -.,ﬂ
Z 1
L 3
:
X
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are nearly identical. Note that (1.5) with a = ¢ is different from

n
i=1 %
(1.4); in some cases the bound in (1l.4) is smaller than that in (1.5) but
- in other cases the reverse is true.
For the degenerate distribution F on R with unit mass at 1, Theorem
- 1 ylelds bounds for Poisson or mixed Poisson approximations for sums. In
this case, (l.4) is the same as (1.2), and (1.5) is consistent with the
inequalities of Brown (1983) and Kabanov et al. (1983),
which were established by martingale techniques.,
Brown (1983) also obtains compound Poisson approximations for
certain discrete variables via Poisson approximations. This approach,
however, does not apply to the general case. We prove our results by

rather direct arguments based on judicious conditioning and the use of

(1.1) as a random distance for random distributions. Our approach also

brings to light the key role of the F,'s.

i
e
From its proof, one can easily see that Theorem 1 is also true when :j-
the number of variables n in the sum is a stopping time of {Fi}' For S
instance, Theorem 1 applies to sums of the form XN(C)Xi, where =

i=1
N(t) = ziI(ri < t) and T, < T, < «eo are stopping times of the increasing

o-fields {F(t)} and Fi - F(Ti), respectively. Theorem 1 also holds when o

F and a are random; the Z in (1.4) and (1.5) would then be mixed compound
Poisson.

The rest of this paper is organized as follows. Section 2 gives ,f:
some basics on the total-variation distance, Section 3 consists of the

proof of Theorem 1, and Section 4 gives an example for Markovian

“.
\‘_
occurrences of an event. w
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2. Basic Inequalities for Distances

Let X and Y be random elements of some measurable space. A
well-known coupling inequality is
(2.1) d(X,Y) < P(X #Y).
The X,Y in the probability are the random elements -- with an arbitrary
dependency — defined on a common probability space. Inequality (2.1)
follows because P(XeB) < P(X#Y) + P(YeB).

It is natural for us to analyze d(X,Y) in terms of conditional
probabilities. Accordingly, we sometimes refer to X as having a
distribution EF(+) where F is a random distribution. Typically,

F(B) =P(X € BIF), or F could be defined as a measurable function of

random elements.

Lemma 2.1. Suppose X and Y have the respective distributions EF(+) and
EG(+), where F and G are random distributions. Then

(2.2) d(X,Y) < E[d(F,6)].

In case F(B) = P(XeB|F) and G(B) = P(YeB|G), for some o-fields F and G,
then

(2.3) d(x,Y) < E[d(F,6)] < E[P(X # Y|F,G)].

Proof. Expression (2.2) follows since

d(X,Y) = supy|EF(B) - EG(B)| < sup E|F(B) - G(B)| = E[d(F,G) ].

Expression (2.3) follows from (2.2) and a random version of (2.1).

Remark. Keep in mind that F,G in the expectation in (2.2) are the random

distributions on a common probability space and their dependency is

arbitrary. A similar comment applies to the X,Y,F,G in the probability

in (2.3).
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Distances involving functions of random elements, such as sums or

4
-]
maxima, can generally be represented as D = d(h(X),h(Y)), where :ﬁi
o4
X = (xl,...,xn), Y = (Yl,...,Yn) and h is a measurable function from the o)
range space of X and Y to some other measurable space. Here are some E:
._~:4
bounds on this distance. D
-—
n :
i=1 “:
(i11) If Xl,...,Xn are independent and Yl,...,Yn are independent, 3]
N
n ;
then D < I d(xi’Yi)' <.
1=1 )
(iv) If xl,...,xn are adapted to the increasing o-fields {Fi}2=0 and jﬂ
Yl,...,Yn are adapted to the increasing o-fields {Gi}2=0’ and -:J
L .*
F,(B) = P(X, ¢ B|F _)), G,(B) = P(Y; € B|G,_;), then -.f.:}
4
n n L"*
(2.4) D <E[ £d(F,,6)] <E[ LR(X #Y,|F_;, G )] ]
i=1 i=1 o
Proof. Statement (1) is true since Ef
D = sup,|P(h(X) € B) = P(h(Y) € B)| g
1 1 -]
= supBIP(X €eh (B)) - P(Y ¢ h "(B))| < d(X,Y). ol
Statement (ii) is true since by (1) and (2.1) we have ::a
<1
n n R
D<P(X#Y)=P(U (X, #Y,}) < TP(X, #Y,). - 4

i i i i

i=1 i=1

Now consider (iii) when n=2. From (i), the triangle inequality for d, -
and the independence, we have v
S
.'.'{
D € d((X),X,),(¥],¥,)) < d((X],X,)),(Y],%,)) + d((¥),X,),(¥,Y,)) =
SO
< d(Xl,Yl) + d(Xz,Yz). ;:
o
—
o~

L% N

v 0.
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:: Using this inequality and induction yields (iii) for general n.

N Under the hypotheses of (iv), it follows by successive conditioning
]

] .

W that P(Xele...xBn) = E[Fl(Bl)...Fn(Bn)], and a similar statement holds
{ for Y. Then using (i), (2.2) and ({ii) we have

:j: n

I D < d(x,y) < E[d(Fl...Fn, Gl...Gn)] <E 121 d(F ,G,).

The second inequality in (2.4) follows from (2.3).

The next two results deal with compound Poisson distributions.
" Lemma 2.3. If X is CP(a,F) and Y is CP(8,G), with F({0}) = 0 and 1
’ G({0}) = 0, then d(X,Y) < |a ~ 8| + (a A B)4(F,G).
Proof. First consider the case in which a < B. Clearly Y is equal in
distribution to Y1+ YZ, where Yl,Y2 are independent C(P(g-q,G) and
CP(a,G), respectively. Note that the distributions of X and Y2 can be %
written as EFN*(o) and EGN*(-) , respectively, where N is a Poisson E;

random variable with mean ag. Then applying the triangle inequality, .j

* nk
(2.2), (2.1) and Lemma 2.2 (iii) in the form d(Fn ,Gn ) < nd(F,G), we

have .
4

L -4

d(X,Y) < d(X,Yz) + d(YZ,Yl + Y2) < Ed(F" ,G ) + P(Yl# 0) s

< ENd(F,G) + 1 - e ™% ¢ 4d(F,6) + 8 - a. 1

R

This proves the assertion when o < 8, and a similar proof applies when 1
_

Lemma 2.4. Suppose X is a random element of S and let ':
(2.5) p=P(X # 0) and F(B)=P(X ¢ B|X # 0). '
If Z 1s CP(p,F), then d(X,Z) < p2. ?}
Proof. It suffices, by (2.1), to construct X,Z on a common probability :i
—_— N
S

space such that P(X#Z)<p2. To this end, let N,U and Yl,...,Yn be

independent random elements on a common probability space such that N is

.............
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a Poisson random variable with mean p, each Y, has the distribution F,

i
and P(U =0) = (1 - p)ep =1~ P =1). Define
N
X = Yl(l - I(U=0, N=0)) and Z=1Y,.
i
i=1
An easy check shows that X satisfies (2.5), and Z is clearly CP(p,F).
Furthermore,
P(X #2) =P(X #Z, N=0)+P(X #2, N >2)
= P(U = 1)P(N = 0) + P(N »2) = p(1 - e P) < p2.
This completes the proof.

We end this section by comparing two random elements that have

certain conditional distributions that are equal.

Lemma 2.5. Let X and Y be random elements. If there is a measurable set

A such that P(XeB|XeA) = P(YeB|YeA) for each measurable B, then

(2.6) d(X,Y) < |P(X € A) - P(Y € A)|.

Proof. Let U, V and W be independent random elements on a probability
space. Assume that U is uniform on (0,1) and that V and W take values in
A and AF, respectively, and their distributions are P(V € B) =

P(X € B|X € A) and P(W € B) = P(X € B|X € AS). Let p and q denote the
respective probabilities in (2.6), and define X = VI(U < p) + WI(U > p)
and Y = VI(U € q) + WI(U > q). Clearly X and Y satisfy the hypotheses
and, moreover, P(X # Y) = P(p Aq < U <p Vaq) = |p~ qf. Thus the
assertion follows by applying (2.1).

3. Proof of Theorem 1

In addition to the notation of Theorem 1, we let Gp(.)=

pF(-)+(1—p)60(-), where §. 1s the Dirac measure with unit mass at 0, and

0
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we let Y be a random element with distribution E(Gp *...*Gp (*)) (recall

1 n
that Py is random).
To prove (1.3), consider the inequality
n n
(3.1) a( I Xi,Z) <d( I Xi,Y) + d(Y,z).
i=1 i=1

By the use of successive conditioning, it is clear that

n
P( Z X

€ B) = E[F{*...*F'(B)], where F{(B) = P(X; ¢ B|F
1=1

i 1-1)'

Note that Fi(-) = piFi(-) + (l-pi)GO(-), and so d(F!,G_ ) = d(Fi,F) = di'

Py
Then applying (2.2) and Lemma 2.2 (iii), we have

n n
(3.2) d( I X_,Y) <E[d(F!*...*F', G *...%G_ )] <E( £d,).
i=1 t 1 LI 51 Py i=1 i

Similarly, using P(ZeB) = E[Hp *...*Hp (B)], where the distribution Hp is

1 n
CP(p,F), and applying Lemmas 2.1, 2,2 (iii) and 2.4, we have

(3.3) d(Y,2) <E[A(G_*...*G_ , H_ *...*H_)]
P pn’ p1 pn
n n
<E[ I d(6_,H )] <E(Z pi).
i=1 Py Py i=1

Then combining (3.1) ~ (3.3) yields the assertion (1.3).

n
Now consider the assertion (l1.4). Here Z is CP( I ai,F). Let
i=1

Ul,...,Un be independent random elements with the respective

distributions Ga ""’Ga « Then by applications of (3.2), Lemmas 2.
1 n

2.2 (i11) and 2.5 (with A = s \ {0}), we have

t L
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n n n n
d( I xi,Z) <d( Xi,Y) + d(Y, I Ui) +d( L Ui,Z)
i=1 i=1 i=1 i=1
n
SE( £d,) +E[dG_*...*%C_, G_*...%G )]
=1 1 P Phn 9 %
+ d(G *OQC*G 9 H *...*H )
| % 4 %
b 2
<E[ Zda+ |py - off + af]-
i=1
Finally, to prove (1.5), consider the inequality
n n
(3.4) d( I xi,z) <d( £ xi,z') + d(z2',2),
i=1 i=1
n
where Z is CP(a,F) and Z' is mixed CP( I pi,F). By Lemmas 2.1 and 2.3 we
i=1

n
have d(2',Z) < EI X Py~ al. Applying this and (1.3) to (3.4) yields
i=1

(1.5).

4. A Compound Poisson Approximation for Markovian Occurrences of an

Event

Suppose that Y., Yl,... is a Markov chain with states 0 and 1 that
represent the non-occurrence and occurrence, respectively, of a certain
event E. Let € = P(Y, = 1|Y0 = 0) and p = P(Y,= 1|Y0 = 1), and assume
that € and p are not zero or one. The stationary distribution of this
Markov chain is

m(0) = (L-p)/(1-p+e€), =(l)=c¢c/(l-p+ €).
Consequently, when ¢ is small, then the event E is rare.
n

Consider the sum Nn = zilei, which is the number of occurrences of

the event E in time n. We assume, for simplicity, that the Markov chain
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is stationary. Isham (1980) and Boker and Serfozo (1983) showed that if
€ varies with n such that ¢ +0 and ne + a > 0 as n + », then Nn
converges in distribution to a random variable Z that is Cp(a,F) with
F({k}) = pk-l(l - p), k 1. A bound on the rate of this convergence is
given in the following result. Brown (1983) obtained a variation of this

bound by another approach.
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Theorem 4.1.

(4.1) d(N ,2) < [ne - al + e(1 + p+ en(2 - p))/(1 - p + €).

. .
. L"-'l"'
. - W
(PR '/ I I

Proof. Define the random variables

X, =kflk(1 Y Y e Y (=Y ), d=l,.n,

T . 0 . . *
Ve
L

.
P

' = o -
Xl L leYz Yk(l Y

).
k=1 k+1

DA

*
a s le oo

|,

When the Markov chain begins a sojourn in state 1 at time i (a success

t
'
g 4

run of the event E), then X, records the length of that sojourn.

i

Clearly

’

PR
PR A

pyi= P(X, > 1|Y0,...,Yi_1)
[ -]

= I -Y, et l1-p) = el -Y, ),
1 1-1 1-1

Y, 1 X; > 1) = F(K).

.....
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F (k):= P(X; < k|Y0,...,
= n ! = ]
Let Tn 21=1X1 and Tn Tn + Xl, and consider

(4.2) d(Nn,Z) < d(Nn,T;) + d(T;, Tn) + d(Tn,Z).

i

U

.
P
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Clearly

'
A

(4.3) AN ,T!) SP(N_ #T!) =P(Y =1,Y_ . =1) = nlp,

ntl
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L = = =
(4.4) d(T;’ Tn) < P(x1 # 0) P(Y1 1) = »(1),
and by (1.5)
n, n
(4.5) d(T_,2) < I Epj + E| ¢ Py - al
i=1 i=1
2 n
= ne“n(0) + Ele 2 (1 - Y, ,) ~ af
i-1
i=1
2
< ne w(0) + enw(l) + |ne - al.

Combining (4.2) - (4.5) yields (4.1).
Remark. Note that the preceding proof applies (1.5) to the auxiliary sum
'1‘n instead of to the original sum Nn' One could also apply (1.4) to Tn’

but this would yield (4.1) with 2 - p replaced by (2 - p)2, which is

worse.
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